Home 3D Pointcloud Classification Network Survey
Post
Cancel

3D Pointcloud Classification Network Survey

3D Point Cloud

3D shape classification 3D object detection and tracking 3D point cloud segmentation

3D shape classification

PointNet

3D object detection and tracking

1. Region Proposal-based :

  • 提出几个可能的包含对象的区域,然后提取区域特征以确定每个提议的类别标签。

multi-view based: 慢

  • 从 BEV 图生成一组高度准确的 3D 候选框,并将它们投影到多个视图的特征图(例如,LiDAR 前视图图像、RGB 图像)。然后他们结合来自不同视图的这些区域特征来预测定向的 3D 边界框.

  • RT3D使用了预 RoI 池化卷积来提高MV3D 的效率。具体来说,他们将大部分卷积操作移到了 RoI 池化模块之前。因此,对所有对象建议执行一次 RoI 卷积。实验结果表明,该方法可以以 11.1 fps 的速度运行,比 MV3D 快 5 倍。

segmentation-based:STD(F)/PointPainting/PointRGCN

  • 语义分割技术去除大部分背景点,在前景点上生成大量高质量的提议以节省计算量,如图 8(b) 所示。与multi-view based相比,这些方法实现了更高的对象召回率,更适用于具有高度遮挡和拥挤对象的复杂场景。

    frustum-based : F-ConvNet

  • leverage existing 2D object detectors to generate 2D candidate regions of objects and then extract a 3D frustum proposal for each 2D candidate region. 受到 2D object detectors的限制。

2. Single Shot Methods :

  • directly predict class probabilities and regress 3D bounding boxes of objects using a single-stage network. They do not need region proposal generation and post-processing.
  • fast

    BEV-based

Discretization-based : 3DBN/SA-SSD/

  • convert a point cloud into a regular discrete representation, and then apply CNN to predict both categories and 3D boxes of objects.

Point-based Methods : 3DSSD

  • 直接以原始点云为输入

other : LaserNet/Lasernet++

3D point cloud segmentation


Grid-GCNN

LDG CNN

PointWeb

  • detection
  • acc not good

pointconv

1000 points<9.9ms

PAConv

batch size = 16 0.118s / batch 7ms / 1w points acc : 0.935981

PointView-GCN

This post is licensed under CC BY 4.0 by the author.