Home Feature VS IMU
Post
Cancel

Feature VS IMU

0_1. 分析数据:

0_2. 步骤:

  • 单帧:

1.提取地面,提取特征

2.单帧与静态帧匹配,

3.分别按匹配结果与IMU结果,计算单帧点云与静止帧中最近点距离,统计在不同距离范围中点的占比。

4.按照距离分配intensity

  • 建图:

1.使用里程计位姿去畸变;

2.里程计位姿叠帧建图;

3.IMU位姿去畸变;

4.IMU叠帧建图;

5.与静止场景比较特征重合程度;

6.计算静止点云与地图中最近的点的距离,统计在不同距离范围中点的占比。

7.按照距离分配intensity

1. 单帧ICP(scan-to-scan)

  • 第0帧(静止帧)与第251帧(动态帧,已去畸变)对比

1.1 位置/姿态变换结果对比

 IMU测量里程计结果所有点匹配去地面点匹配
pos.x11.986441996534612.11312.231520939312.19829592444
pos.y0.355452716307060.2799510.207423692690.201242980913
pos.z-0.0273962728230.2293920.039556665600.150457801652
roll0.125645657352570.19904774999990.261034446410.075069163511
pitch-0.015616643344090.0350390808002-0.38558692648-0.20547417157
yaw1.7139456517309751.76616077494081.922285414541.942115501283

1.2 使用不同特征匹配结果:

  • 结论:

  • 地面点可以有效约束z轴漂移。

  • 去除地面点匹配的精度更高。

  • 单独的柱面/立面等特征无法完全约束三个方向的运动。

原始点云
第0帧与第251帧
惯导测量结果LiDAR里程计测量结果
TRANSLATION:
11.98644199653465
0.35545271630706643
-0.027396272823478673
ROTATION:
0.12564565735257952
-0.015616643344094927
1.7139456517309755
TRANSLATION:
12.113
0.279951
0.229392
ROTATION:
0.19904774999987535
0.03503908080022266
1.766160774940752
采用特征匹配效果匹配结果
所有点云TRANSLATION:
12.231520939336493
0.2074236926917551
0.03955666560427022
ROTATION:
0.26103444641217954
-0.38558692648123116
1.9222854145442057
nongroundTRANSLATION:
12.198295924444954
0.20124298091307577
0.1504578016521565
ROTATION:
0.07506916351143701
-0.20547417157562423
1.9421155012833935
groundTRANSLATION:
-0.45032801957550905
-1.539946635341638
-0.04409875650376381
ROTATION:
0.061396539662778
0.0393528844241862
2.687272808286958
facadeTRANSLATION:
0.18602666396360037
0.003922289244317075
-0.659840212760906
ROTATION:
0.9523135428663062
-0.7056622717456797
2.622647650589112
pillarTRANSLATION:
1.9201082213595009
1.6873773196469384
-0.018532779692659894
ROTATION:
-1.5216757902856088
-0.8649583504104713
-0.7739914823982094
beamTRANSLATION:
-0.2902069118127943
1.1793059954475964
-0.25265109924299545
ROTATION:
-2.5767941530217193
0.09564350376227218
0.563153967273353
vertexTRANSLATION:
1.4010472774746574
-1.084962950016715
-0.733484141649384
ROTATION:
0.47538640627435874
-1.475592489579815
4.088730099925485

1.3 单帧点云与静止帧中点距分析:

实验方法:

分别按匹配结果与IMU结果,计算单帧点云与静止帧中最近点距离,统计在不同距离范围中点的占比。以此来反映匹配精度。

结论:

  • 去除地面点后进行匹配,整体点云,以及非地面点云重合程度更好。

  • 里程计得到的变换误差大于0.5m的点占比最少;地面点云重合程度相对更高。

 IMU测量矩阵里程计测量矩阵所有点ICP非地面点ICP
全部点云
81836 points
dist < 0.1: 9463 (11.56%)
[0.1, 0.2): 20743 (25.35%)
[0.2, 0.3): 28139 (34.38%)
[0.3, 0.4): 8918 (10.90%)
[0.4, 0.5): 4516 (5.52%)
[0.5, ~ ~): 10057 (12.29%)
dist < 0.1: 26723 (32.65%)
[0.1, 0.2): 28379 (34.68%)
[0.2, 0.3): 9651 (11.79%)
[0.3, 0.4): 5171 (6.32%)
[0.4, 0.5): 3300 (4.03%)
[0.5, ~ ~): 8612 (10.52%)
dist < 0.1: 32270 (39.43%)
[0.1, 0.2): 20806 (25.42%)
[0.2, 0.3): 9305 (11.37%)
[0.3, 0.4): 5685 (6.95%)
[0.4, 0.5): 3771 (4.61%)
[0.5, ~ ~): 9999 (12.22%)
dist < 0.1: 32990 (40.31%)
[0.1, 0.2): 20168 (24.64%)
[0.2, 0.3): 9409 (11.50%)
[0.3, 0.4): 5732 (7.00%)
[0.4, 0.5): 3826 (4.68%)
[0.5, ~ ~): 9711 (11.87%)
地面
9936 points
dist < 0.1: 9 (0.09%)
[0.1, 0.2): 574 (5.78%)
[0.2, 0.3): 3940 (39.65%)
[0.3, 0.4): 1586 (15.96%)
[0.4, 0.5): 1061 (10.68%)
[0.5, ~ ~): 2766 (27.84%)
dist < 0.1: 1899 (19.11%)
[0.1, 0.2): 2128 (21.42%)
[0.2, 0.3): 1551 (15.61%)
[0.3, 0.4): 1055 (10.62%)
[0.4, 0.5): 822 (8.27%)
[0.5, ~ ~): 2481 (24.97%)
dist < 0.1: 1322 (13.31%)
[0.1, 0.2): 2619 (26.36%)
[0.2, 0.3): 1508 (15.18%)
[0.3, 0.4): 1010 (10.17%)
[0.4, 0.5): 805 (8.10%)
[0.5, ~ ~): 2672 (26.89%)
dist < 0.1: 1774 (17.85%)
[0.1, 0.2): 2207 (22.21%)
[0.2, 0.3): 1496 (15.06%)
[0.3, 0.4): 1057 (10.64%)
[0.4, 0.5): 775 (7.80%)
[0.5, ~ ~): 2627 (26.44%)
去地面点
19897 points
dist < 0.1: 1467 (7.37%)
[0.1, 0.2): 4889 (24.57%)
[0.2, 0.3): 5932 (29.81%)
[0.3, 0.4): 3178 (15.97%)
[0.4, 0.5): 1393 (7.00%)
[0.5, ~ ~): 3038 (15.27%)
dist < 0.1: 3850 (19.35%)
[0.1, 0.2): 7387 (37.13%)
[0.2, 0.3): 3342 (16.80%)
[0.3, 0.4): 1768 (8.89%)
[0.4, 0.5): 1004 (5.05%)
[0.5, ~ ~): 2546 (12.80%)
dist < 0.1: 5437 (27.33%)
[0.1, 0.2): 5784 (29.07%)
[0.2, 0.3): 2886 (14.50%)
[0.3, 0.4): 1738 (8.73%)
[0.4, 0.5): 1108 (5.57%)
[0.5, ~ ~): 2944 (14.80%)
dist < 0.1: 5453 (27.41%)
[0.1, 0.2): 5817 (29.24%)
[0.2, 0.3): 2917 (14.66%)
[0.3, 0.4): 1737 (8.73%)
[0.4, 0.5): 1128 (5.67%)
[0.5, ~ ~): 2845 (14.30%)

2. 里程计全局建图(scan-to-map)

2.1 轨迹:

  • 点云匹配的到的位姿在局部更加精确,体现在柱面粗细、墙面厚度拟合的精度,在较大范围内z轴上漂移较大。

2.2 量化分析:

  • 特征匹配建图的点云与静止点云的匹配精度较IMU + GPS的精度更好。

  • 匹配后点距大于0.5m的点主要为未去除的动态物体(车辆/行人)。

  • 高度越高,匹配精度越差。

2.2.1 TEST SCENE 1

USING ODOMUSING IMU
ODOM MAP 1,000,000 points
STATIC TOTAL: 167635 points
dist < 0.1: 57218 (34.13249023175351%)
[0.1,0.2): 64855 (38.68822143347153%)
[0.2, 0.3): 21072 (12.570167327825335%)
[0.3, 0.4): 9238 (5.510782354520238%)
[0.4, 0.5): 5758 (3.4348435589226596%)
[0.5, ~ ~): 9494 (5.663495093506725%)
IMU MAP 1,000,000 points
STATIC TOTAL: 167635 points
dist < 0.1: 24193 (14.43195036835983%)
[0.1, 0.2): 77132 (46.01187102931965%)
[0.2, 0.3): 40690 (24.27297402093835%)
[0.3, 0.4): 11747 (7.0074865034151586%)
[0.4, 0.5): 4409 (2.630119008560265%)
[0.5, ~ ~): 9464 (5.645599069406747%)
ODOM DISTANCE 0~1mIMU DISTANCE MAP 0~1m
ODOM DISTANCE MAP 0~0.5mIMU DISTANCE MAP 0~0.5m

2.2.2 TEST SCENE 2

USING ODOMUSING IMU
ODOM MAP 1,000,000 points
STATIC TOTAL: 124486 points
dist < 0.1: 109772 (88.1801969699404%)
[0.1, 0.2): 13553 (10.887168034959755%)
[0.2, 0.3): 144 (0.11567565830695821%)
[0.3, 0.4): 95 (0.07631380235528494%)
[0.4, 0.5): 91 (0.07310058962453608%)
[0.5, ~ ~): 831 (0.6675449448130714%)
IMU MAP 1,000,000 points
STATIC TOTAL: 124486 points
dist < 0.1: 83008 (66.68059058849991%)
[0.1, 0.2): 40045 (32.168275950709315%)
[0.2, 0.3): 397 (0.3189113635268223%)
[0.3, 0.4): 101 (0.08113362145140819%)
[0.4, 0.5): 94 (0.07551049917259772%)
[0.5, ~ ~): 841 (0.6755779766399435%)
ODOM DISTANCE 0~0.5mIMU DISTANCE MAP 0~0.5m

2.3 点云展示:

2.3.1 使用里程计位姿去畸变/里程计位姿叠帧建图

SCENE 1

  • overview
  • pillar 地图柱面拟合程度较好
  • facade

SCENE 2

  • overview
  • pillar 近处柱面不贴合,远处贴合程度较好
  • facade

2.3.2 使用IMU去畸变/IMU位姿叠帧建图

SCENE 1

  • overview
  • pillar 灯柱部分点云重合程度差变粗
  • facade

SCENE 2

  • overview
  • pillar 近处柱面不贴合,远处贴合程度较好
  • facade 右侧墙面变厚明显
This post is licensed under CC BY 4.0 by the author.